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Abstract
The conventional approach to double reduction of the order of an ordinary
differential equation using Lie symmetries is via the normal subgroups of point
symmetries. We show that, provided that one is prepared to use nonlocal
symmetries, initial reduction by the nonnormal subgroup does not prevent the
double reduction. We further illustrate our results with the general third-order
equations invariant under the nonsolvable algebras, sl(2, R) (of which the Chazy
equation is a noted example) and so(3).

PACS numbers: 02.20.−a, 02.30.Hq

A common method for the investigation of the properties of ordinary differential equations
is to examine them for Lie point symmetries (preferably using one of the better symbolic
manipulation codes such as LIE devised by Head [11, 18] or the well-known interactive code
of Nucci [15, 16]) and, when symmetries are found, to use the symmetries inter alia to reduce
the order of the equation. If a sufficient number of symmetries ‘of the right type’ is available,
the differential equation can be reduced to an algebraic equation.

In the conventional approach to the reduction of order of ordinary differential equations
by means of their Lie symmetries the procedure laid down in the case of multiple symmetries
is to reduce by means of the normal subgroup [17]. In terms of this approach not all of the
elements of a nonsolvable algebra are available to be used for reduction. In the case of two
point symmetries, �1 and �2, with

[�1, �2] = �1, (1)

�1 being the normal subgroup. Reduction by �1 leads to the descendant of �2 being a point
symmetry of the reduced equation. Were �2 the first symmetry to be used to reduce the order
of the differential equation, �1 would be lost as a point symmetry of the reduced equation.

The first part of this paper is concerned with the reduction of order via the nonnormal
subgroup of two-dimensional algebras as this is the order of algebra at which this question
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initially arises. We show that, as far as reduction of order is concerned, there is no need for
the choice of normal subgroup. In the second part of this paper we look at two important
nonsolvable algebras, sl(2, R) and so(3), and see that, again, reduction by the nonnormal
subgroup presents no obstacle to reduction for those who are prepared to accept a wider class
of symmetry than point or contact. It is with this wider class of symmetry that the results
presented here are likely to have the most application.

In Lie’s [14] classification of two-dimensional algebras there are four types of algebra,
two Abelian and two solvable. The latter pair of algebras have the Lie bracket (1) and are
distinguished by the proportionality or otherwise of their elements. The relevant properties
of these four algebras are summarized in table 1. We emphasize that these four algebras are
representatives of four distinct classes of algebras equivalent under point transformation. For
reduction of order it does not matter which symmetry is used firstly if the algebra is Abelian
and so we have no further interest in the Abelian algebras in this paper.

Table 1. Canonical forms of Lie algebras of dimension two and their properties.

Canonical forms
Type [�1, �2] Nature of �1 and �2

I 0 Abelian and �1 = ∂x

unconnected �2 = ∂y

II 0 Abelian and �1 = ∂y

connected �2 = x∂y

III �1 Solvable and �1 = ∂y

unconnected �2 = x∂x + y∂y

IV �1 Solvable and �1 = ∂y

connected �1 = y∂y

We may use the Lie bracket relation (1) without loss of generality for, if we had

[X1,X2] = aX1 + bX2, (2)

the definition

�1 = aX1 + bX2 �2 = aX2 (3)

(or an equivalent were a zero) would restore the Lie bracket relationship (1). We note further
that in the case of one symmetry there is no loss of generality in taking it as ∂x since all
symmetries of the form

� = ξ(x, y)∂x + η(x, y)∂y (4)

are equivalent to this under point transformation. (Equally a contact symmetry is equivalent
to ∂x under contact transformation.)

In table 1 the basic symmetry was taken by Lie to be ∂y . Here we use ∂x as we want the
equations to be autonomous and so more in line with the appearance of the equations that we
have treated in related articles [6, 8].

In the proportional case, type IV of table 1,

�2 = f (x, y)�1, (5)

where f (x, y) is some function. We take �1 as ∂x . Then (1) with (5) is ∂f/∂x = 1, so that

f = x + g(y) (6)
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and we have

�1 = ∂x �2 = [x + g(y)]∂x. (7)

If we introduce the new variables X = x + g(y) and Y = y, the symmetries become

�1 = ∂X �2 = X∂X (8)

which is a normal form for this class. By a normal form we mean a simple form for which all
other members of the equivalence class are related by point transformation and which has the
basic properties of its class. We revert to lower case variables.

To reduce order by �2, we determine the two invariants of

�
[1]
2 = x∂x + 0∂y − y ′∂y′ (9)

from the solution of the associated Lagrange’s system

dx

x
= dy

0
= dy ′

−y ′
. (10)

We take the two invariants to be

u = y v = xy ′. (11)

The descendant of �1 is

�̄1 = y ′∂v = v

x
∂v. (12)

Since

du = y ′ dx = v

x
dx, (13)

we have

x = exp

[∫
du

v

]
(14)

and so (12) becomes

�̄1 = exp

[
−

∫
du

v

]
v∂v (15)

which is an exponential nonlocal symmetry. However, since

�̄
[1]
1 = exp

[
−

∫
du

v

] {
0∂u + v∂v + (v′ − 1)∂v′

}
, (16)

the exponential terms in the associated Lagrange’s system for the two invariants of �̄1 cancel
to leave

du

0
= dv

v
= dv′

v′ − 1
(17)

so that the two invariants are

p = u q = v′ − 1

v
. (18)

Reduction of order by the transformation (18) is a well-defined operation. For example,
the general second-order ordinary differential equation invariant under (8) (now written in
lower case variables) is

y ′′ = y ′2f (y). (19)

Equation (19) is representative of the class of equations invariant under the representation
of the type IV algebra used here. It is clearly trivially integrable (in the sense of reduction
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to quadratures) which is not surprising as it is linear in the representation given in table 1.
However, our present interest is in reduction of order. We compare the reduction procedures
for the two routes, namely, �1 followed by �2 and �2 followed by �1. We have

�1 : u = y, v = y ′ �2 : u = y, v = xy ′

v′ = vf (u) v′ = vf (u) + 1
�̄2 : p = u, q = v′v �̄1 : p = u, q = (v′ − 1)/v

q = f (p) q = f (p).

(20)

In the nonproportional case we can again take �1 as ∂x and assume that

�2 = ξ∂x + η∂y (21)

in which we must have η nonzero. From (1)

∂ξ

∂x
= 1

∂η

∂x
= 0 (22)

so that

ξ = x + f (y) η = g(y). (23)

Under the change of variables

X = x + f (y)− exp

[∫
dy

g(y)

] ∫
f ′(y) exp

[
−

∫ y

0

du

g(u)

]
dy

Y = exp

[∫
dy

g(y)

]
(24)

the two symmetries take the normal forms

�1 = ∂X �2 = X∂X + Y∂Y . (25)

We revert to lower case variables and use the normal form (25).
For reduction of order via the nonnormal subgroup �2, the variables are found from the

solution of
dx

x
= dy

y
= dy ′

0
(26)

to be u = y/x and v = y ′ so that

�̄1 = − y

x2
∂u = −1

x
u∂u = −exp

[
−

∫
du

v − u

]
u∂u (27)

since

du =
(

y ′

x
− y

x2

)
dx = (v − u)

dx

x
. (28)

Reduction of order via �̄1 is achieved by means of the change of variables obtained from
the solution of

du

u
= dv

0
= (v − u) dv′

−v′(v − 2u)
, (29)

namely,

p = v q = uv′(v − u). (30)

The general second-order ordinary differential equation invariant under (25) is

yy ′′ = f (y ′). (31)



Exponential nonlocal symmetries and nonnormal reduction of order 10113

The two routes for reduction, as indicated above, are

�1 : u = y, v = y ′ �2 : u = y/x, v = y ′

uvv′ = f (v) v′ = f (v)/[u(u− v)]
�̄2 : p = v, q = uv′ �̄1 : p = v, q = uv′(v − u)

q = f (p)/p q = f (p).

(32)

We conclude that in the case of two-dimensional algebras reduction of order via the
normal subgroup is not essential for the further reduction of order by the second element of
the algebras. The reason for this is that, when the nonnormal subgroup is used, the second
symmetry becomes exponential nonlocal and such a symmetry is as good as a point symmetry
for reduction of order. This is another instance [9, 3, 10] of the utility of nonlocal symmetries
in the reduction of order for ordinary differential equations.

The Chazy equation [5]

y ′′′ + yy ′′ − 3

2
y ′2 = 0, (33)

an instance of the generalized Chazy equation [6]

y ′′′ + yy ′′ + ky ′2 = 0, (34)

has the three Lie point symmetries

�1 = ∂x �2 = x∂x − y∂y �3 = x2∂x + (12− 2xy)∂y (35)

which constitute a representation of the nonsolvable algebra sl(2,R). Equation (33) is a member
of the class of equations

y ′′′ + yy ′′ = −y2

96
(24y ′ + y2) + (12y ′ + y2)2

×F

[
y ′′

(12y ′ + y2)3/2
+

1

72

(
3y

(12y ′ + y2)1/2
− y3

(12y ′ + y2)3/2

)]
, (36)

where F is an arbitrary function of its argument, invariant under the representation of sl(2, R)
in (35). We note that the numerical value F = 1/96 corresponds to the Chazy equation. The
Chazy equation, be it the specific equation (33) or the generalized equation (34), is not strictly
equivalent to (36) since the complete symmetry group [12] of either equation must contain
four elements [4] whereas (36) is completely specified by the three elements of sl(2, R) given
in (35). The additional symmetry removes the arbitrariness of the function F.

The form of (36) is found by successive imposition of the requirements of invariance of
the three symmetries in (35). If we commence with the arbitrary form

y ′′′ = f (x, y, y ′, y ′′), (37)

invariance under �1 implies that f in (37) is free of x. The third extension of �2 is

�
[3]
3 = x∂x − y∂y − 2y ′∂y′ − 3y ′′∂y′′ − 4y ′′′∂y′′′ (38)

and, when it is applied to (37) without x being present in f (due to the action of �1), (37) is
required to take the form

y ′′′ = y4f̄

(
y ′

y2
,
y ′′

y3

)
. (39)

The form (36) follows from the requirement that (39) is invariant under the action of the third
extension of �3. Since

[�1, �2] = �1 [�1, �3] = 2�2 [�2, �3] = �3, (40)
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the conventional approach would have us reduce the order of the equation by either of �1 or
�3, certainly not �2. For �1 the invariants are u = y and v = y ′ and �2 and �3 become,
respectively,

�̄2 = −u∂u + 2v∂v

�̄3 = (12− 2xy)∂u − (2y + 4xy ′)∂v (41)

=
(

12− 2u

∫
du

v

)
∂u −

(
2u + 4v

∫
du

v

)
∂v

since du = y ′ dx = v dx.
We observe that �̄3 is nonlocal and cannot be used for reduction of order since the nonlocal

element is not exponential. The invariants of �̄2 are p = v/u2 and q = v′/u. Under this
change of variables the nonlocal symmetry �̄3 becomes

¯̄�3 = −2 exp

[
−

∫
dp

q − 2p

] [
(12p + 1)∂p +

(
6q + 3

q

p

)
∂q

]
(42)

which is exponential nonlocal and so, available for a further reduction of order.
We now consider the nonnormal route commencing with �2. The invariants of �2 are

u = xy and v = x2y ′ and �1 and �3 become, respectively,

�̄1 = y∂u + 2xy ′∂v

= exp

[
−

∫
du

u + v

]
{u∂u + 2v∂v}

(43)

�̄3 = exp

[∫
du

u + v

]
{(12− u)∂u − 2(u + v)∂v}

since du = (y + xy ′) dx = [(u + v)/u] dx. As both �̄1 and �̄3 are exponential nonlocal, both
are available for reduction of order. If we take �̄1, its invariants are found from the solution of

du

u
= dv

2v
= (u + v) dv′

−2v + v′(2u + v)
(44)

and are

p = v

u2
q = (u + v′)v′ − 2v

u3
. (45)

After some calculation we find that

¯̄�3 = − 2

u
exp

[∫
du

u + v

] [
(12p + 1)∂p + 3(6q + p)∂q

]

= −2 exp

[∫
p dp

q − 2p2

] [
(12p + 1)∂p + 3(6q + p)∂q

]
(46)

since

dp

q − 2p2
= du

1 + up
(47)

and

1

u
exp

[∫
du

u + v

]
= exp

[
−

∫
du

1 + up

]
. (48)
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The symmetry ¯̄�3 is exponential nonlocal and can be used for reduction of order. Its
invariants are

r = 1

72ζ 3
[72q + 3p + 2]

(49)

s = 1

ζ 2

[
q ′

(
ζ 2 − 72ζ r + 1

)− 18rζ 3 − 54rζ + 1
]
,

where 12p + 1 = ζ 2.
Under the successive reductions of order, the general equation (36) reduces to

s + 72F(r) = 0 (50)

and the Chazy equation (33) to the simple algebraic equation

4s + 3 = 0. (51)

It is of interest to note that the exponential nonlocal symmetry �̄3 remains exponential
nonlocal under the reduction of order produced by transformation (45). We remark that there
appears to be no foundation for the proposed requirement that reduction of order must be by
the normal subgroup. The admission of a wider variety of symmetries for the reduction of
order not only increases the chances for complete reduction of an equation but also improves
the probability that type II hidden symmetries [1, 2] will arise and thereby further enhance the
likelihood of complete reduction of order.

The classic nonsolvable algebra of dimension three is so (3). It occurs in physics whenever
there is conservation of angular momentum. In that context it has a representation in terms
of the polar and azimuthal angles of spherical coordinates. There are also representations in
terms of vector fields in the plane. One of these is [7]

X1 = w∂t − t∂w

X2 =
(
1 + t2 −w2) ∂t + 2tw∂w (52)

X3 = 2tw∂t +
(
1− t2 + w2) ∂w.

However, for the purpose of reduction it is necessary to take linear combinations of these
symmetries so that the reduced symmetries will be exponential nonlocal. Under the
combinations and transformations

�1 ← X1 x ← t + iw

�2 ← X2 + iX3 y ← t − iw

�3 ← X2 − iX3

we obtain the representation suitable for our purpose, namely,

�1 = x∂x − y∂y �2 = x2∂x + ∂y �3 = ∂x + y2∂y. (53)

The invariants of �1 are u = xy and v = x2y ′. In terms of these new variables �2 and �3,
respectively, take the exponential nonlocal forms

�̄2 = exp

[∫
du

u + v

]
(1 + u)∂u

(54)

�̄3 = exp

[
−

∫
du

u + v

]
(1 + u) [u∂u + 2u∂v].

For reduction by �̄2, the new variables are

p = v q = v′(u + 1)(u + v) (55)
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and �̄3 maintains its exponential nonlocal form as

¯̄�3 = exp

[∫
(p − 1)dp

q

] {
2p∂p + [2p(p − 1) + 3q]∂q

}
. (56)

Finally the new variables from ¯̄�3 are

r = p−3/2[q − 2p(p + 1)]
(57)

s = 12 +
4

p
+ 8p − p2 +

5r√
p

+ 3r
√

p +
3r2

2
− 6 log p.

The form of the reduced general equation is the algebraic equation

s = F(r), (58)

where F is an arbitrary function of its arguments. In terms of the original coordinates, the
most general third-order equation invariant under so(3) is

y ′′′ = 6y ′′(xy ′ − y)

xy + 1
− 6y ′(xy ′ − y)2 + 12y ′2

(xy + 1)2
+

y ′2

(xy + 1)2
F

(
xy + 1− 2x2 − 2x4y ′2

x4y ′2

)
.

(59)

Once again we see that reduction of order need not proceed by the normal subgroup
since the nonlocal symmetries which arise are always exponential nonlocal symmetries. The
acceptance of the useful rôle which nonlocal symmetries can play in reduction of order
broadens the class of equations which can be reduced to algebraic form.

In conclusion we note that the initiation of the process of reduction of order need not be
in a point (contact) symmetry. Consider the instance of the equation

y ′′′ + yy ′′ + y ′2 = 0 (60)

which is a particular form of the generalized Chazy equation (34). In addition to the obvious
Lie point symmetries of invariance under translation in x and self-similarity (the first two
symmetries of (35)), nonlocal symmetries of the form η∂y are easily calculated from the
determining equation [13]

η′′′ + ηy ′′ + η′′y + 2η′y ′ = 0 (61)

to be

�4 = exp

[
−

∫
y dx

]
∂y

�5 = exp

[
−

∫
y dx

]∫
exp

[∫
y dx

]
∂y (62)

�6 = exp

[
−

∫
y dx

]∫
x exp

[∫
y dx

]
∂y.

The invariants obtained from the associated Lagrange’s system for �4 are u = x and
v = y ′ + y2/2. The reduced equation of the second order is

d2v

du2
= 0 (63)

which is trivially solved. The solution of (60) follows from the solution of the resulting Riccati
equation

y ′ +
1

2
y2 = A + Bx, (64)

where A and B are arbitrary constants of integration. This is an instance in which not only the
reduction of order can be easily obtained by means of the use of a nonlocal symmetry but also
the solution of the original differential equation can equally easily be obtained.
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[5] Chazy J 1911 Sur les equations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale
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